
Eberhard Karls Universität Tübingen

Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Lehrstuhl für Datenbanksysteme

Bachelor Thesis Media Informatics

Binoculars for Habitat

Implementation of a Web-Based Frontend for an
Observational SQL-Debugger

Philipp Moers
Sunday 21st September, 2014

Reviewer
Prof. Dr. Torsten Grust

Supervisor
Benjamin Dietrich

Abstract

Our digital world is not imaginable without database management systems (DBMS)
and SQL is the de facto standard to access databases nowadays.

Since SQL is a declarative and non-imperative query language, finding faults in queries
can be a difficult and laborious task. If the computed result does not come out as
expected, the user often ends up replacing parts of the query arbitrarily to understand
what causes the error. What the DBMS does exactly is basically hidden away from
him.

The tool PGHabitat delivers the opportunity to debug PostgreSQL queries on
the syntactic and semantic level of SQL itself. In order to do so, any subexpression of
a potentially large and complex query can be marked and its intermediate step results
observed.
The goal is to make query debugging more bearable by showing the user which values
are computed and which are not. This has to be done in a user-friendly manner, in
which neither unnecessary information nor technical details confuse him.

In this thesis we describe the way, a usable, web-based interface for PGHabitat is
developed and implemented as its frontend. A great variety of techniques are deployed.
Based on a debugger written in Haskell, the frontend is created with HTML and CSS,
built with PHP and equipped with JavaScript functionality. We incorporate features
that make it possible to handle multiple markings easily and visibly observe the query
computation in an understandable way.

In the end, we look at a suitable piece of software that helps to find faults in SQL
queries straightforwardly or to understand the semantics of SQL.

iv Binoculars for Habitat

Contents

1 Introduction 1

2 Using the Frontend 5
2.1 Basic Features . 6
2.2 Interesting Rows . 8
2.3 Nested Tables . 9

2.3.1 Depiction of Nested Tables 11
2.3.2 Theory on Nested Tables . 11

2.4 Aggregates . 12
2.5 Row Filter . 14
2.6 Query Management . 19
2.7 A Tidy Table . 19

3 Designing the Frontend 21
3.1 Technologies . 21
3.2 Stateful Web Pages . 22

3.2.1 PHP Superglobals . 22
3.2.2 Asynchronous JavaScript and XML 23

3.3 Execution of Habitat . 24
3.3.1 Usage of Habitat . 24
3.3.2 The Habitat Script . 26

3.4 JSON Tables . 28
3.5 Project Structure . 29

Contents v

4 Implementing the Frontend 33
4.1 Markings . 34

4.1.1 Saving Markings . 34
4.1.2 Colors . 36

4.2 The Editor . 37
4.2.1 Creating Markings . 38
4.2.2 The Redraw-Markings Bug 39
4.2.3 The Marking Control Section 41

4.3 JT Processing . 42
4.3.1 Existence of Scopes and Observations 43
4.3.2 Arranging a State . 43
4.3.3 General Modifying . 44
4.3.4 URIDs and UCIDs . 45
4.3.5 Deleting Scopes . 47

4.4 The Observation Table . 49
4.4.1 Rendering the Table . 49
4.4.2 Implementing Interesting Rows 52
4.4.3 Implementing Row Filter . 54

4.5 Additional Pages . 55
4.5.1 Implementing the Query Management Page 55
4.5.2 Implementing the Setup Page 56

5 Conclusion 59

List of Abbreviations 61

List of Figures 62

Bibliography 64

1 Introduction 1

1 Introduction

There are a lot of different fields of application in which database management systems
(DBMS) and relational database management systems (RDBMS) in particular play an
important role. The best known RDBMSs clearly are implementations of the SQL
standard like PostgreSQL, a widely used, powerful, open source RDBMS.

In order to access the data, the user formulates queries. To be precise, we are talking
about the SQL SELECT statement which is part of the data manipulation language
(DML). Other statements like INSERT, UPDATE and DELETE or statements of the
data definition language (DDL) like CREATE and DROP are not in focus here. Anyhow,
SELECT is the most commonly used statement and - unlike most others - produces
output of interest.

Like every code that is written by programmers, these queries may contain faults which
can result in errors. Finding these faults - in other words “debugging the query” - can
be a challenge, especially with increasing complexity. The purpose of a debugger is to
help finding faults more easily. This saves time, money and nerves.

For SQL queries this requires a new approach for the following reason: Pure SQL is
a declarative language, which means that a query describes what should be computed
rather than how it should be computed. It is up to the RDBMS to apply appropri-
ate steps to achieve that goal. The latter makes it difficult to have a look at the
RDBMSs cards: Chosen algebraic plans can diverge dramatically from what queries
adumbrate. Conventional step-by-step debugging is not the path to take. If we just
extract intermediate step results, we need strong comprehension of RDBMS internal
matters.

That is where Habitat comes into play: It offers the opportunity to debug queries

2 Binoculars for Habitat

on the semantic level of SQL itself - “in their natural habitat”. The user wants to
find logical flaws in his query without having to understand the program execution
from a RDBMSs perspective. Torsten Grust and Jan Rittinger introduced Habitat, a
true language-level observational SQL debugger [GKRS11, GR13]. The concept called
mark and observe allows it to mark arbitrary subexpressions that are suspected of
being flawed and observe the values they assume. Benjamin Dietrich implemented a
version for PostgreSQL [Die14] for his thesis for diploma: PGHabitat.

However, PGHabitat is still in development and its usage from the command line
interface is ponderous.

In the context of this thesis, we developed and implemented a web-based frontend for
PGHabitat. It acts as a Graphical User Interface (GUI) for the tool. The goal is to
make the usage easy and user-friendly.

With the frontend, we are able to visualize the evaluation of SQL queries on the level
of their own language. The observation of queries is “brought near” to the user: We
constructed “Binoculars for Habitat”.

The handling of ternary logic can serve as a good example to show how useful the
software is (Figure 1.1).

Figure 1.1: Comparison with NULL

(a) Incorrect Comparison

(b) Correct Comparison

1 Introduction 3

Comparison with NULL values in SQL is a common source of errors. Because NULL
stands for the absence of a value, it can not be compared to other values. Thus,
the comparison result is NULL, too.1 SQL offers the IS [NOT] NULL construct to
check for NULL values.

In a comprehensible way, the differences are made clear by our GUI.

This thesis not only presents the current piece of software, but also describes the way
it was created, which problems occurred and how they were solved.

As usual in web development, we did not engage ourselves with complicated, scientific
matters. Rather, the creation of the frontend can be compared to handicraft work
and included a lot of trial and error. The sum of many little varying parts is what
constitutes our work.

1For the purposes of the WHERE predicate, this is understood as false.

2 Using the Frontend 5

2 Using the Frontend

The best software serves little purpose if the user does not know how to use it. This
chapter introduces what the debugger is all about and contains a handful of examples
to show the advantages of PGHabitat and our frontend.

At the same time we will explain the ideas to make the interface usable and practical.
We show the included features and why they are useful.

As a motivation and impression of the project, let us introduce an example that can
be used to demonstrate the debugger.
We consider two small table instances with kids and toys (Figure 2.1)

Figure 2.1: Tables: Happy Kids

name gender age
"Rob" "m" 10
"Sue" "w" 16

"Dannie" "w" 5
(a) kids

name weight minage
"Cube" 80 8

"Lightsaber" 660 15
"Wooden Train" 112 5

(b) toys

Now, to find out the names of all happy kids that are allowed to play with at least one
toy, one could formulate the query shown in Figure 2.2. The query result on the given
table instances is not what we expect to see: A table with two rows for Sue and Rob
(Figure 2.3). We want to know why Dannie is missing.

6 Binoculars for Habitat

Figure 2.2: Query: Happy Kids

1 SELECT name
2 FROM k i d s
3 WHERE EXISTS (SELECT 1
4 FROM t o y s
5 WHERE k i d s . age > toy s . minage)

Figure 2.3: Result Table: Happy Kids

name
"Rob"
"Sue"

2.1 Basic Features

In his thesis for diploma, Benjamin Dietrich already thought of two aspects a useful
GUI should cover [Die14, 7.3]:

“A nice and clear illustration of merged observation tables. First and fore-
most, this includes a nested display of tables, as it is needed to present
table-valued observations as well as indirect relations between observa-
tions.”

Since tables are the output of a SQL query anyway, they are the most obvious and
comprehensible way to display observation results. PGHabitat itself already has the
opportunity to merge many observation tables into one.

What is meant by nested tables will be discussed in Section 2.3 Nested Tables.

“The possibility to mark arbitrary code pieces via mouse dragging instead
of braces.”

PGHabitat provides that expressions are marked with braces.1 The user really can
not be expected to write and delete braces in his query manually all the time. Because

1We will have a closer look on that in Section 3.3 Execution of Habitat.

2 Using the Frontend 7

the mouse is an intuitive interface used since the 1990s and everything in the web is
designed for it, the most simple and obvious way to mark an expression is to use the
mouse.

In our frontend, a marking is set automatically every time the user selects a non-empty
substring of the query. This substring can also be the whole query.

Even though the feature of automatic marking setting is nice and practical, it can
be inappropriate sometimes. When editing text, it is common to select parts in order
to cut, copy or delete them. If the user wants to do so, we give him the opportunity to
disable automatic marking setting with a checkbox. Then, he can transform a selection
into a marking by pressing a button.

Having said that it is easy to create markings, the same applies for deleting them. If
the user has seen what he wanted to see from a temporary observed expression, he
should be allowed to get rid of it afterwards without being interrupted in his workflow.
Markings can be deleted with one click, too.

A First Debugging Process

The user can paste the query from Figure 2.2 and start to debug it by simply selecting
name with the mouse as a first step. A new marking is created.

Automatically, a table with two rows for Sue and Rob (Figure 2.4) appears. It contains
exactly the two rows of our result from Figure 2.3. PGHabitat also shows us the
row values the results come from. In fact, name is not just a column name, but an
expression that is evaluated with respect to each row value. Of course, in this case the
expression is trivial.

8 Binoculars for Habitat

Figure 2.4: Observing Happy Kids, Step 1

(a) Marking

(b) Observation Table

We now want to know why Dannie is not allowed to play with any toy according to
this query result. The flaw, of course, is the comparison operator > which should be
>=. How is the debugger going to help the user finding it?

2.2 Interesting Rows

If we create an additional observation on the EXISTS... predicate as a second step,
a new observation table with a third row for Dannie shows up. Explicitly visualized,
the predicate has been evaluated to false here (Figure 2.5). This is the reason for
Dannie not to occur in the query result. Now the distinction between the row value and
the expression of the result column is clear: Because the predicate was not satisfied,
there is no need for the expression to be evaluated. Hence, the observation name does
not have a value for Dannie.
The essence here is that observations can be non-existent.

Since Dannie’s row is the one we are interested in, it would be nice if we could mark
it somehow. We introduce the interesting rows feature. On mouse click, a row is
marked as interesting or uninteresting, respectively. Interesting rows are highlighted

2 Using the Frontend 9

Figure 2.5: Observing Happy Kids, Step 2

(a) Markings

(b) Observation Table

with a light yellow background color. Especially for big tables this feature can be
useful.
By default, none of the rows is interesting.

Additionally, another estimable feature is the persistence of interesting rows. If ob-
servations are created or removed, interesting rows stay interesting. In our example,
Dannie’s row will still be interesting after we added a third observation.

Naturally, it is possible to mark multiple rows as interesting simultaneously. We com-
bine that with another feature: invertible interestingness. With just one click the
user can make every interesting row uninteresting and vice versa.

2.3 Nested Tables

In order to find out why the predicate for Dannie was not satisfied, we add yet another
observation on the predicate of the subquery (Figure 2.6 (a)).

What can be seen here is that this inner predicate needs to be evaluated multiple times:

10 Binoculars for Habitat

Figure 2.6: Observing Happy Kids, Step 3

(a) Markings

(b) Observation Table

(c) Observation Table with Collapsed Subtables

(d) Observation Table with Nested Heads

2 Using the Frontend 11

subtables occur (Figure 2.6 (b)). For each outer row value of kids, toys assumed
multiple values. For Sue and Rob, one row was enough to fulfill the predicate. For
Dannie, all three rows of toys were consulted. In other words, the content of table
cells may be non-atomic.

2.3.1 Depiction of Nested Tables

Actually, subtables are what can make observation results look complicated. We adapt
the idea of nested tables and display tables heads detached from table bodies.
Figure 2.6 (d) shows what nested observation tables look like without this. Thanks to
the lifting of table heads, we improve an overview, because the head is only displayed
once. Also, nesting is perceived as a natural thing.

One can imagine that an observation table can become huge if we display every sub-
table. This is why we invented hideable tables: every table can be replaced with
a space-saving label. Figure 2.6 (c) shows a version of the observation table with
collapsed subtables. By default, subtables are only shown if they contain one row. Big
subtables are not shown from the beginning. Hereby, we give the user the opportunity
to orient himself first. He can show and hide subtables ad lib.

The idea of hideable tables happens to go hand in hand well with interesting rows: If a
row is marked as interesting, its subtables are shown, otherwise they are collapsed. This
way, the user can easily toggle the visibility of subtables by clicking on the containing
row. Thanks to invertible interestingness it is possible to pull out all subtables from a
totally collapsed state immediately.

Because Dannie’s row was persistently marked as interesting in step 2, the user does
not need to do that this time.

2.3.2 Theory on Nested Tables

Nested tables in Habitat can be understood as an example of Non-First-Normal-
Form [Kor86, 6.6] according to Edgar F. Codd who lay the foundations for RDBMSs.

12 Binoculars for Habitat

Since SQL is a compositional language, a query can contain an arbitrary number of
subqueries. Therefore, we need to be prepared for arbitrarily deep nested observation
tables.

Row variable bindings do not influence the semantic of subqueries. That causes an
identical schema of subtables in every row: Two adjacent rows can not contain subta-
bles with different columns. This is why we can lift subtable headers. Note that we
consider originally different columns2 as one column.

Similar to the scope of a variable in imperative languages, we have scopes in our
PGHabitat result. Each row variable binding in the FROM clause of a query spans a
new scope in subqueries. For instance, the WHERE or the SELECT clause can contain
subqueries. Scopes can either occur alongside each other or nested. Also, the top-level
query is enclosed in a single scope.

A RDBMS only returns values of the top-level scope. To observe intermediate step
results, a general way to extract subexpressions must be found. It is possible that
subqueries are correlated: They can contain variables that refer to bindings in enclosing
queries.
This problem is solved in a general way:

“For any marked subexpression e, Habitat consistently understands e as
a function of its free row variables.” [GR13, 2]

With this approach, any expression can be separately evaluated “without its context”, if
we apply this function with the right variable bindings. PGHabitat creates appropriate
queries to receive all the values of marked subexpressions.

2.4 Aggregates

Let us expand our example with kids and toys. Consider two other tables: one for the
number of remaining toys and one that tells us which kid is interested in which toy
(Figure 2.7).

2Columns from subtables in adjacent rows

2 Using the Frontend 13

Figure 2.7: Tables: Remaining Toys

name remaining
"Cube" 42

"Lightsaber" 2
"Wooden Train" 0

(a) toystorage

kid toy
"Rob" "Lightsaber"
"Sue" "Lightsaber"
"Sue" "Cube"

(b) interests

Figure 2.8: Query: Remaining Toys

1 SELECT name
2 FROM t o y s t o r a g e
3 WHERE r ema in i ng >= (SELECT COUNT(k i d)
4 FROM i n t e r e s t s
5 WHERE name = toy)

The query in Figure 2.8 computes the names of toys that are stored often enough to
satisfy the demand of the kids. Luckily, in the result table every toy is listed.

PGHabitat has one advantage that can be seen nicely here: In the query, the SQL ag-
gregate COUNT is used. Aggregates have something to do with so-called groups: They
compute a value for every group of rows. Generally, these individual rows that build a
group are not visible to the user. PGHabitat allows to observe them (Figure 2.10).

Besides, this table is suitable to motivate another feature: TheHiding of Row Values.
In many cases, a lot of columns are redundant. With a simple checkbox the user can
get rid of the row values. Obviously, tables will look much more compact (Compare
Figure 2.10 (b) and (c)).

The Count Bug

In order to optimize the execution of computations, correlated subqueries can be
unnested [Kim82]. An unnested version of the query in Figure 2.8 can look like the
query in Figure 2.11. The idea is to use a join instead of evaluating a subquery for every
toy. toystorage is joined with a temporary table that counts the number of interested

14 Binoculars for Habitat

Figure 2.9: Result Table: Remaining Toys

name
"Cube"

"Lightsaber"
"Wooden Train"

kids for each toy.

This time, it may not be that obvious that the unnested query is flawed. The result
table does not contain the Wooden Train. The reason for that is that there is no
Wooden Train in the interests table at all. Thus, it can not be grouped and after the
join there is no row that can fulfill the equality predicate.

While the explained fault is comprehensible with these particular table instances, it is
hard to find with only the abstract unnesting instructions given. It was not found for
years and got famous under the name “count bug” [GW87].

With the debugger, the temporary count table with only two rows can be illustrated.

2.5 Row Filter

PGHabitat can handle advanced SQL constructs like recursive queries. A common
example is based on a table of flights (Figure 2.13).

The query in Figure 2.14 computes all cities we can reach from Berlin. It needs to
be recursive because we do not only want direct connections: Every city we can reach
possibly offers new destinations.

2 Using the Frontend 15

Figure 2.10: Showing Row Values

(a) Markings

(b) Observation Table with Row Values

(c) Observation Table without Row Values

16 Binoculars for Habitat

Figure 2.11: Unnested Query for Remaining Toys

1 WITH cnt (toy , cnt) AS
2 (SELECT toy , COUNT(k i d)
3 FROM i n t e r e s t s
4 GROUP BY toy)
5 SELECT name
6 FROM t o y s t o r ag e , cnt
7 WHERE r ema in i ng >= cnt AND name = toy

Figure 2.12: Incorrect Result Table: Remaining Toys

name
"Cube"

"Lightsaber"

Figure 2.14: Query: Flights

1 WITH RECURSIVE d e s t i n a t i o n s (depa r tu r e , d e s t i n a t i o n) AS
2 (SELECT f . d epa r tu r e , f . d e s t i n a t i o n
3 FROM f l i g h t s f
4 WHERE f . d e p a r t u r e = ’Berlin’
5 UNION
6 SELECT l . d epa r tu r e , n . d e s t i n a t i o n
7 FROM d e s t i n a t i o n s l , f l i g h t s n
8 WHERE l . d e s t i n a t i o n = n . d epa r t u r e)
9

10 SELECT depa r tu r e , d e s t i n a t i o n
11 FROM d e s t i n a t i o n s ;

The intermediate steps can be observed with PGHabitat. We can draw on the
inversion feature here to show every subtable.

As we see in Figure 2.15 (a), tables can become big easily. It frequently happens that
the user only is concerned about a small amount of the presented data. This is why
we introduce row filter. Within a dropdown menu for each column, a particular value
can be picked. As a result, the table is cleared from rows with other values. In our

2 Using the Frontend 17

Figure 2.13: Table: Flights

departure destination carrier flight_num ticket
"Chicago" "Munich" "AA" "123" 500
"Chicago" "London" "AA" "124" 400
"Munich" "Frankfurt" "GW" "234" 50
"Frankfurt" "London" "BA" "235" 70
"London" "Stuttgart" "BA" "345" 80
"Berlin" "Madrid" "BA" "150" 150
"Madrid" "Honkong" "BA" "1400" 1400
"Honkong" "Peking" "BA" "100" 100
"Honkong" "Berlin" "BA" "1000" 1000
"Peking" "Rom" "BA" "1000" 1200

example, the table becomes much more helpful if we filter the predicate with true

(Figure 2.15 (b)).

Note that we filtered each subtable thanks to lifting of subtable heads. If they had
their own headers like in Figure 2.6 (d), we would have had to filter them one by one.
Filtering them all definitely is the better alternative.

The filter functionality is conjunctive. That means, if two columns of a table are
filtered, only the rows that have equal values for both columns remain. Consequently,
rows can be found quickly even in big tables.

Of course, each dropdown menu contains an entry with the opportunity to show all
rows again. Also, one can reset every applied filter with a button.

The software can visualize how the flight connections come about.

18 Binoculars for Habitat

Figure 2.15: Observing Many Flights

(a) Unfiltered Observation Table

(b) Filtered Observation Table

2 Using the Frontend 19

2.6 Query Management

The user probably exploits PGHabitat with a bunch of different queries or different
versions of a query, respectively. We give him the opportunity to go back to a query
used before.

However, saving queries manually quite cumbersome. We take that off the user’s
shoulders by saving every observed query to a query history automatically. In addition
to that, the user can manually pin and unpin queries that are important to him for any
reason.

Since browsing recent queries and pinning them is not part of the main functionality
of the debugger, it should not disturb the workflow on the main page and therefore be
on a separate page. This leads to the following more general concept.

2.7 A Tidy Table

We need to make sure that our GUI - while meeting all of the requirements - still looks
nice and not overloaded, so that working with it over a longer period of time is as
pleasant as possible.

Lifting of subtable heads is an important step not to make the table look knotty.

Since the observation table is the core of the debugger and the user easily spends hours
inspecting it, it should make a tidy impression. Thus, the access to the features is
concealed, yet still they can be reached easily.

The inversion of interesting rows is suggested when the user moves the mouse over a
scope header. It is performed on mouse click. Likewise, if a column is filterable, the
dropdown menu is shown when the header is clicked.

In addition to that, a button makes it possible to hide every subtable to start from a
compact top-level table. If everything is hidden, a second click shows every subtable
again, so that the whole PGHabitat result is visible. In difference to the inversion

20 Binoculars for Habitat

feature, this does not only affect the rows of one scope but every row in the table.

To free a space for the observation table is a good way to give the page an open layout.
That is why there is nothing else than the necessary control elements.

Moreover, there is an option to hide the editor. This makes the observation table
the center of interest all the more.

3 Designing the Frontend 21

3 Designing the Frontend

In the previous chapter we saw what the frontend looks like, which features it includes
and how it is used. But how is it brought to practice? We will sketch the architecture
in general, which technologies we use and how they interlock.

3.1 Technologies

To implement the GUI, we use the HTML5 and CSS3, which is state of the art right
now. The new elements article, header, nav et cetera help us to structure the page.

When writing applications for the web, it is common to use a framework, a template
engine or something that prevents us from writing basic HTML repetitiously. But to use
a big CMS like TYPO3 would mean an unnecessary huge overhead to us. Although
it would have been fun to create our frontend in Happstack - a Haskell based web
application server - we stick with the popular Apache HTTP server, version 2.2.22.
Apache can run on a wide range of operating systems and can be installed easily.
We build the frontend with the scripting language PHP version 5.3, which comes with
Apache at will. PHP allows us to create dynamic web pages and run scripts on the
web server.

Most of the functionality of the frontend is built with JavaScript. JavaScript is used
in nearly every modern web page and offers endless possibilities. This is what we need
to make our software interactive.
Furthermore, we use d3.js, which is not as well known as the previous technologies.
D3, as we will call it from now on, is a JavaScript library which makes handling and

22 Binoculars for Habitat

visualizing data more easy. We can “join” data to existent or not-yet-existent HTML
elements. Also it allows us to implement animations. D3 can be compared to the
more popular JQuery.

What we need to keep in mind when developing is where both of these scripts - PHP
and JavaScript - are executed. PHP is an HTML preprocessor: A PHP script is lying
on the server waiting to be requested. It will be executed to create a document that
can be delivered to the client. So the client never sees any PHP code.
A totally different purpose is served by JavaScript: It is the job of the client - meaning
the web browser - to interpret and execute functions of a JavaScript document. With
JavaScript we can react to mouse events and manipulate the document on the client
side.

3.2 Stateful Web Pages

3.2.1 PHP Superglobals

PHP knows the concept of superglobal variables [PHP, Predefined Variables]. To be
concrete, we use $_SESSION and $_POST. These superglobals are available in all
scopes within a script.

$_POST is an associative array that stores every variable passed to the script with the
HTTP POST method [RFCb]. In practice this means that we can use a regular HTML
form to transmit a query to the server.

But there is more information the server needs from the client. Most of it does not
change when we send requests multiple times in a row and should not be transmitted
that often anyway. Here is where another superglobal comes into play: $_SESSION.
This variable is independent from individual requests. Its lifetime is unspecified. By
using it, we can generate and keep a state on the server side, which can last as long
as the user wants to work with PGHabitat. Each PHP script that wants to use the
$_SESSION variable correctly needs to call session_start() at the beginning.

3 Designing the Frontend 23

We use $_SESSION to maintain a state on the server side. For instance, we store
the database connection parameters there.

3.2.2 Asynchronous JavaScript and XML

Asynchronous JavaScript and XML - or short AJAX - is not a single technique but
stands for one idea that can be summarized like this: A web application can send and
retrieve data independently from loading or refreshing the page. AJAX allows us to
communicate with the server while keeping the same page and its state on the client’s
side.

This suits our frontend perfectly: We want to get PGHabitat results from the server
several times but we do not want it to interfere with the displayed web page. If the
user creates a new marking we need to consult PGHabitat again, but it would be
unpleasant to reload the whole page every single time.

As a consequence, we call a JavaScript function that sends HTTP requests and re-
trieves their results. The JavaScript object type that is prefabricated for this is called
XMLHttpRequest. Beyond that, the function that sends the request calls another
one, which is responsible for handling the result.

Because what we receive is formatted in JSON 1 and not XML, the more precise term
would be AJAJ (Asynchronous JavaScript and JSON) here. This actually is a thing,
but probably thanks to pronunciation difficulties the term AJAX is used, even if JSON
is the transmitted data format.

Moreover, the lifetime of JavaScript variables can extend over several requests. This
means that their values represent a state that can last until the user leaves the web
page. We therefore use them to store information about markings for instance.

1More on that in Section 3.4 JSON Tables

24 Binoculars for Habitat

3.3 Execution of Habitat

There are two main reasons for us to do some thinking about an appropriate interface
between PGHabitat and its GUI:

1. PGHabitat is written in Haskell while our frontend runs as a web page deliv-
ered by a web server. Somehow the JavaScript engine needs to interact with
PGHabitat.

2. The process of debugging a query consists of creating and deleting a great
amount of markings most of the time. Keeping a consistent state, PGHabitat
has to be consulted many times in a row.

The solution we did choose is a binary. It is executed by a PHP script called
habitat.php , which returns the PGHabitat result to the client. So the web
server runs on the same machine where the binary is located.

Furthermore, the executing user must have habitat in his PATH-variable and must
have the rights to execute it. Apache is started by the root user and switches to
another configurable specified user to perform such actions [APA, Security Tips]. On
Linux machines like ours, the default user created for this is www-data.

3.3.1 Usage of Habitat

When operating the PGHabitat executable in the terminal, we need to feed it with
a special string. PGHabitat reads from stdin, so we can use the echo command in
combination with powerful UNIX pipe.

But how is this special string made? Basically it is just the original query. In fact,
PGHabitat can be executed without errors with plain SQL queries. But in order to
make profit out of PGHabitat, of course we need to mark expressions. This is done
with curly brackets, also known as braces (“{” and “}”). Any marking represents an
observation and can and should have a unique identifier (marking ID).

Now consider the query

3 Designing the Frontend 25

1 SELECT name FROM k i d s

Let us suppose, we want to observe which names are evaluated. Randomly using the
ID xy42, the string PGHabitat wants to see would look like

1 SELECT { xy42{name}} FROM k i d s

To work properly, the binary also needs a connection string in manner of Post-
greSQL to connect to the database [POS, 31.1.1].

We need the following information:

• a username,

• a password,2

• the host,3

• the TCP/IP port on which the PostgreSQL daemon is to listen.

We choose the connection URI variant.

In normal mode, PGHabitat produces some SQL statements like CREATE

TABLE... and CREATE FUNCTION... that can create tables which contain
the values of the marked expressions (2.3.2). The output also comes with statements
to query those tables and merge them into one table. However, there is an option
-JSON that executes all of these statements and wraps the result in a JSON string.

Figure 3.1 shows the command we need to execute.

2This is only necessary if this is the users authentication method. PostgreSQL offers different
methods.

3We are running the database process on the same machine PGHabitat and the frontend are running
on, so that would be localhost. But technically, any machine that is reachable through the
network would work here.

26 Binoculars for Habitat

Figure 3.1: Habitat Usage

1 echo ’SELECT {xy42{name}} FROM kids’ |
2 h a b i t a t u s e r : password@host:port/database -JSON

3.3.2 The Habitat Script

The habitat.php script does execute the command we just explained. But there
are a few more notable aspects.

In difference to others, this PHP script does not echo an HTML document but the
output of PGHabitat. Hence, the so called “Content-Type”, which is declared in the
HTTP header via the header command [PHP, Other Services - Network Functions]
should not be “text/html” but “text/plain” instead [RFCa].

In fact, the script is completely detached from the user interface and does not manip-
ulate or prepare the PGHabitat output in any way. Other applications that are no
GUIs could take advantage of this.

The script gets its input from $_POST and $_SESSION (3.2.1). It reads the original
query as well as the marked query from $_POST and writes or overwrites the corre-
sponding variables in $_SESSION, respectively, if and only if they are set in $_POST.
After this, the $_SESSION variable is used. For this reason, we can execute the script
again with an empty $_POST variable and still get a result.

The database connection parameters are kept in $_SESSION. In addition to that, we
store a boolean flag that tells whether the executable should be searched in PATH or
the one included in the project should be used. This list of variables could possibly be
extended in the future.

Moreover, the query is logged in another variable, the query history.4 The history is
implemented with an array, in which the query is prepended if it can not be found
already. We do not want the same query to appear multiple times.

4Why this is needed can be seen in Section 4.5.1 Implementing the Query Management Page.

3 Designing the Frontend 27

Now, we have to prepare the command we want to execute. For the connection string
this is a little tricky: Since the username is actually an optional parameter, we can
not use the @ character in every connection string. Instead, we create a variable that
contains the username with an optional password and the @ character that only will
be set if a username is given. Similarly, the password’s : character only is prepended
if a password is given. The same applies for port and the database with /.

Execution in Shell

Finally, the command must be executed. This is done by PHP’s shell_exec func-
tion, which returns the output of the executed command on stdout. PHP uses the sh
shell for this.

Since we are also interested in everything that comes out of the stderr stream, we
simply redirect stderr to stdout. In sh this is done with 2>&1.

What caused more trouble is the escaping of single quotes. It does make sense to
define the command in double quotes. This is how we can insert our variables easily,
because they are expanded [PHP, Types - Strings]. The query string that should be
echoed is put in single quotes, so that every character is taken literally except the
single quote itself.
This works fine as long as there is no single quote inside the query string. In case there
is one, it terminates the string and the subsequent characters are not interpreted as
they should anymore. This would not only break the proper functioning of the software,
but also be a huge security issue, because one could execute arbitrary commands on
the server by choosing a suitable string. What we need to do to prevent this, is to
escape all the single quotes.

When trying out PGHabitat in the terminal it is important, which shell we use. In
fish for instance, we can escape a single quote with \' as it is common in nearly
every programming language. In bash or sh however, this is not possible, because
characters are read one by one.

To solve this problem, we can replace every ' with '\''. This terminates the string,

28 Binoculars for Habitat

puts a single quote character behind and starts a new string. The scripts still works,
because the echo command can take more than one argument.

Instead of doing that manually, we now use a cleaner solution and call the PHP function
escapeshellarg which is made for that purpose.

3.4 JSON Tables

JavaScript Object Notation (JSON) is a standard to transmit structured data in textual,
human-readable form. JSON is a great interface for our purposes for several reasons:

• It is really simple: There are a few basic data types (null, integer, boolean, string)
that roughly match the SQL data types.

• More complex types can be built using arrays ([..., ...]) and objects with
key-value pairs ({...:..., ...:...}). This also allows nesting.

• Correct JSON per se represents a correct JavaScript Object when parsed and
evaluated.5 The choice could not be better since this is the language we work
with.

A table can be expressed in JSON as follows:

• A row is represented by a JavaScript object. Column names are the keys of the
object’s attributes and map to the row specific values.

• Multiple rows are summarized in arrays.

The kids table from Figure 2.1 (a) would have the JSON representation shown in
Figure 3.2.

This is the format we use to represent our data. Firstly, this is how PGHabitat delivers
the results. Secondly, this is the notation to have in mind when handling tables and
building HTML in the end.

5This is obvious if we bring home the fact that JSON was derived from JavaScript originally.

3 Designing the Frontend 29

Figure 3.2: Table represented in JSON

1 [{ name : "Rob" , gender : "m" age : 10 } ,
2 { name : "Sue" , gender : "w" age : 16} ,
3 { name : "Dannie" , gender : "w" age : 5 }]

For a table that is represented in JSON format - a JSON table - we will use the
abbreviation JT. With JTAN we refer to the JSON table attribute name - the key of
an attribute.

To get an impression what a PGHabitat result looks like, let us consider the example
from Figure 2.6 again. A part of what PGHabitat spits out is shown in Figure 3.3.

3.5 Project Structure

On a request, a web server like Apache consults a default page, conventionally called
index.php . Ours just sets a default query in $_SESSION if it was not set before
and redirects to the welcome page.

We separate files of different types in different folders: There are folders for JavaScript
files (js), CSS files (css) and image files (img). Every accessible web page is
saved as a PHP file in pages . The php folder, however, contains other scripts that
do not represent a web page. To avoid redundancy we do not save parts of web pages
that occur on every one of them - like the header and navigation - multiple times.
These template parts are saved in parts .
We also have a bin folder containing the PGHabitat binary. For this reason it is
not necessary to have a binary of one’s own. Hence, PGHabitat works out of the box.
Code from external sources like CodeMirror or D3 can be found in vendor ..

The php/config.php file is included by every web page. Its point is to provide
some global constants. We define constants with paths to the document root and to
the project folder. This is useful for inclusions of other files. For JavaScript and CSS
files on the one hand, absolute paths begin with the document root of the web server.

30 Binoculars for Habitat

Figure 3.3: Output of Habitat

1 {
2 "xScope.rid.0.0" : [{
3 "rid.0.0" : 0 ,
4 "xScope.rid.1.1" : [{
5 "rid.1.1" : [1] ,
6 "rvar.s1:kids" : {
7 "name" : "Sue" ,
8 "age" : 16 ,
9 "gender" : "w"

10 } ,
11 "vObs4:rzQo" : true ,
12 "vObs5:jlsH" : "Sue" ,
13 "xScope.rid.2.2" : [{
14 "rid.2.2" : [1] ,
15 "rvar.s2:toys" : {
16 "name" : "Cube" ,
17 "weight" : 80 ,
18 "minage" : 8
19 } ,
20 "vObs3:qjMz" : true ,
21 "exists:vObs3:qjMz" : true
22 }] ,
23 "exists:vObs4:rzQo" : true ,
24 "exists:vObs5:jlsH" : true ,
25 "exists:xScope.rid.2.2" : true
26 } , {
27 "rid.1.1" : [2] ,
28 "rvar.s1:kids" : {
29 "name" : "Dannie" ,
30 "age" : 5 ,
31 "gender" : "w"
32 } ,
33 "vObs4:rzQo" : f a l s e ,
34 "vObs5:jlsH" : nu l l ,
35 "xScope.rid.2.2" : [{
36 . . .
37 }] ,
38 "exists:xScope.rid.1.1" : true
39 }] ,
40 "exists:xScope.rid.0.0" : true
41 }

3 Designing the Frontend 31

For PHP inclusions on the other hand, absolute paths begin with the root directory of
the machine the web server is running on.

For now, the project consists of the following pages:

• The Welcome Page: A welcome is extended to the user. This page is animated
with D3 and therefore requires running JavaScript. The script redirects the user
to the debugger page after a few seconds (not done by PHP this time!). This
deliberately does not work with JavaScript disabled, because the debugger is
designed for JavaScript anyway. If it is disabled, the user is asked to enable it
via HTML noscript.

• The Debugger Page: This is the heart of the whole project. Here the user
can observe evaluated expressions and refine the query.

• The Query Management Page: Within the debugging process the user prob-
ably changes the query multiple times. On this page he can go back to older
versions or pin queries.

• The Setup Page: This is where the database connection and similar things are
established.

• The Help Page: Any good software should have a help section to assist the
user when he gets started. On this page, he can find some basic instructions.
He can read about the features in case they are not obvious and self-explanatory
enough to him.

Except for the Welcome Page, all of those can be accessed in the navigation on the
top right of the header.

If a page has some page specific JavaScript functionality, it can be found in a separate
file which has the same basename (for instance pages/debugger.php and
js/debugger.js). The same applies for CSS files. These files are included by
the corresponding pages.

4 Implementing the Frontend 33

4 Implementing the Frontend

The requirements and the general functioning of the project are clear now. Finally,
this chapter deals with the realization of the frontend.

We created a web page that is plain and unobtrusive instead of florid and posey,
because this is what fits a debugging tool best.
A straight red header with a navigation section at the right and a footer, they both
build the frame for the content. Nonetheless, we added some shadow and zooming
animation on mouseover with D3 to give it a modern look and feel. Last but not least,
the Welcome Page should make a high quality impression on the user.

But what we should give priority to is the functionality of the debugger. Most of it is
provided by JavaScript functions. Writing, debugging and improving these definitely
was the bulk of the work.

In the following, we will go through some aspects of the scripts. This chapter might
be understood as some kind of documentation. But if we leave out insignificant
implementation details, this can be a good way to show the inner workings of the
software. Also, we will mention some problems that occurred during the development
process. In fact, the implementation is topic of the thesis anyway.

The Debugger Page

The Debugger Page has a simple layout: There is the editor on the left containing the
query and the observation table on the right. If the table is too big, it is displayed below
the editor. The relationship between markings in the editor and in the observation table
is visually clear because of two things:

34 Binoculars for Habitat

• The texts of markings (or parts of them) appear as labels in the table header
cells.

• The colors of markings in the editor and the colors of the accompanying table
header cells are the same.

We reserve a div container for every part of the page. The horizontal layout works
thanks to the CSS attribute float set to left, although divs are block elements which
are displayed one below the other by default in web browsers.

In many cases it is a good idea to divide parts of the script into multiple files to have
things tidy. After trying this for a while, we decided not to follow this principle. The
reason for that is the fact that handling a single file of code is easier sometimes and
some of the functions share global variables to interact with each other. Knowing that
this can cause trouble, it turned out to be the best way to get things working for us.
There are ways to use JavaScript in a more “functional” way for sure.

From the creation of markings to the rendering of the observation table, many functions
are called. To make everything less confusing, let us draw a call graph with some of
them (Figure 4.1). This should explain the relationship of the functions we elaborate
on in this chapter.

In the context of our work, with rendering we mean the access of the DOM to display
a JT, not the actual work that the browser does.

4.1 Markings

4.1.1 Saving Markings

As explained before (3.2.2), we use JavaScript variables to remember a state. This is
why we can save markings in a JavaScript array. A marking is represented by an object
with a bunch of attributes: ID, textual content of the marking, a list of CodeMirror
marking objects, start position, end position and color.
Positions are objects themselves, containing two integers for a line number (line)

4 Implementing the Frontend 35

Figure 4.1: Call Graph

onMouseUpEditor onClickMarkSelection onClickExecuteHabitat

handleSelection executeHabitatcreateMarking createMarkedQuery

handleHabitatResult

handleHabitatJT

jtGlobalRender

jtRender jtRenderRaw

updateUCIDValuemap

jtLiftRowvalues

jtDistributeURIDs

jtDeleteAttr

jtDeleteSingleScopes

jtRenderHead

jtRenderBody

enableInterestingRowFunctionality

enableRowFilterFunctionality

36 Binoculars for Habitat

and the column number within the line (ch).
We absolutely do need the CodeMirror marking objects, because there is no other
way to delete them later on.

If a new marking is created, we have to do several things:

• We must generate a new ID and a new color.

• We must append a CSS class to the document.

• We must save the marking persistently.

• We must update the view for the user.

The ID allows us to identify a marking. Hence, we define a function
createRandomID that randomly creates strings from a predefined set of charac-
ters of a given length. To make sure that marking IDs really are unique as they should
be, we define a wrapping function createMarkingID that creates an ID, checks
that it is different to all existing marking IDs and creates new ones if necessary before
returning it.

The braces mentioned in Section 3.3.1 are not inserted into the query when a marking
is created. Rather, when we are about to send a request to the habitat.php

script, we call a function createMarkedQuery that inserts them simultaneously.
Otherwise, the implementation would have been more complicated since we had to
find out the exact positions with respect to existing markings.

4.1.2 Colors

The color of a marking is what makes it recognizable at first sight. Their choice should
not be underestimated. Thanks to definitions like the CIE 1931 color space [SG] we
can describe colors in a mathematical way. According to Grassmann’s first law, a color
is a three-dimensional quantity [Pog53]. We can divide colors in three components:
brightness, hue and colorfulness. Hue and colorfulness together form what is called
chromaticity. If we only adjust the brightness component, we get monochrome colors

4 Implementing the Frontend 37

that feel close. There are endless tools around the web to create such groups of colors.

For our markings we predefine some colors in the config.js file. These are
preferred if markings are created. If there are no predefined colors left, but more
markings created, we create random colors. Just as createRandomID did,
createRandomMarkingColor checks all existing markings first.

Examining if two colors are the same, is not sufficient here anymore. Instead, we need to
make sure that they are “not too similar”. Thanks to their mathematical representation,
we can compute a color distance, which is implemented as colorDistance. In web
development it is common to express colors in the RGB color model. Distances in RGB
color spaces do not perfectly match the human perception of color distances. This is
of minor importance for our frontend, but a clean solution would be to convert to LAB
color space.

4.2 The Editor

To enter and edit a query, we need to have a text editor, rather than a simple text
area. This way, we can profit by features like syntax highlighting, automatic bracket
matching and custom keybindings.

There are a bunch of JavaScript based source code editors for the web: Ace,
CodeMirror, jsvi, Orion and YMacs, just to name a few. We choose
CodeMirror, which is highly customizable, open source and has a rich API.

The editor is instantiated by a JavaScript function, replacing a simple text area. The
content of this text area has been set to the current query before, saved in the PHP
$_SESSION variable.

When we create the editor, we can define a configuration object to customize it. We
do that by setting the theme, enabling automatic closing brackets, et cetera. Also we
set the mode to text/x-sql enabling syntax highlighting. CodeMirror offers
support for different dialects of SQL out of the box, each defined in JavaScript files.
Also it is possible to define own modes.

38 Binoculars for Habitat

We want to make the editor interactive, so we register event handlers for different
event types. With on we can link the events that CodeMirror fires to arbitrary
functions.

When the content is changed, the query gets a new semantic meaning. Totally different
values could be observed. Maybe the user is about to debug a whole new query. We
react on the “change” event by resetting all markings and hiding the observation table.

4.2.1 Creating Markings

As explained (2.1), we want to set markings when the user selects some text with
the mouse, which happens after the mouse button is released. Sadly, CodeMirror
emits the events “mousedown”, “dblclick”, “keyup” and a few more but not “mouseup”
[CMA, Events], so we can not get this functionality to work this way. What we do
to implement it nonetheless, is to use the JavaScript function onmouseup on the
wrapper element of the editor (an ordinary div element).

Besides, the execution of habitat.php is set in motion automatically whenever a
marking is created or deleted, too. This feature can also be disabled with a checkbox
and performed manually. Mouse-hating users can mark expressions with F6.

If PGHabitat is invoked with an invalid marking, it responses with a parse error.
Currently we allow every possible selection to act like a valid marking. In case of a
parse error we print an error message where the observation table would have been.
There is a function that checks the validity of a marking which just returns true yet.
To implement it, we would need knowledge of the semantics of the query, which means
we would need a parser or some other possibility to figure out whether the selection is
an observable expression.

To highlight a marking in CodeMirror, the API offers a markText function. It
takes start and end position as well as an option object that allows us to configure the
marking [CMA]. We used to call it directly in createMarking, but do not do this
anymore. The reason is explained below (4.2.2).

4 Implementing the Frontend 39

What we do nonetheless is create a CSS class. This class can be specified in the
option object and allows us to define how a marking should be visualized. Let us use
the marking specific color as a background color.

After marking some text in CodeMirror, the text selection (gray background) is
not visible anymore because it is overlaid by the marking color. When it is still present,
the default behavior on mouse click and movement is drag and drop, so that the text
can be moved to another place. This is not a wanted feature in our frontend and leads
to an ugly bug: It is not possible to set a new marking on top of another without
clicking somewhere else first. Our solution is to set the cursor to a new position with
CodeMirrors setCursor function. This way, the selection is removed every time
a new marking is created.

4.2.2 The Redraw-Markings Bug

The redrawMarkings function is responsible for rendering the colored markings in
the editor. It is called every time a new marking is created or an existing marking is
deleted. This is the easiest way to make sure the illustration of markings is correct.
That may not be the case without further adjustments, because markings may overlay
each other.

Figure 4.2: Overlaid Markings

Marking m2 (orange) lies on top of marking m1 (yellow).

In CodeMirror it is possible to draw a marking m2 on top of another marking m1.
If the nested marking m2 is created last, it will be displayed correctly. However, if we
create the markings the other way round, m1 will overlay m2, so that m2 is not visible
anymore.

Our first idea was to redraw every marking in the correct order, meaning that markings
with smaller from-positions are drawn earlier.

40 Binoculars for Habitat

This requires to sort our markings array. The JavaScript function sort which
can be called on arrays is capable of taking a sorting function fsort that compares
two elements of the array [ECM, 15.4.4.11]. Therefore, what we need to do, is to
define a function that compares two markings. Again, this function requires a function
that compares two positions: We implement it under the name of posCompare.
Naturally, lines take precedence and only if they are equal we compare the character
positions.

We sort all markings by from-position in ascending order, or if equal by their to-
position in descending order. The latter does make sense for the following reason:
The later a marking ends the earlier it should start, so that it surrounds other nested
markings.

After sorting, the redrawMarkings algorithm did iterate over all markings, deleted
them via clear [CMA] and immediately drew them again.
The result was not what we expected: Still surrounding markings overlaid others if we
created them afterwards. Both sorting and clearing/redrawing (for single markings)
seemed to work properly.

After a while, we figured out that CodeMirror apparently does not delete a marking
completely on a call of clear. At least, drawing an inner marking that was created
first again does not have the desired effect.

We fixed this issue with a new algorithm that is kind of a workaround: CodeMir-
ror markings are not overlaid anymore. Instead, a PGHabitat marking can consist
of multiple CodeMirror markings, depending on the existence of other markings
within. The algorithm we developed to compute the positions of markings is quite
interesting. Let us have a look (Figure 4.3).

When drawing a marking m, we check every marking within (line 4 and 5) and draw
from a current position cur to the beginning of the inner marking mj. Then we set
cur to the end of the inner marking. It is important that we leave out inner markings
that are nested deeper than one level, because we do not want to draw m where mj

will be! We assure this by having incremented cur before: If we find a marking that is
nested too deeply, its from position must be smaller than cur (line 7).

4 Implementing the Frontend 41

Figure 4.3: The Redraw-Markings Algorithm

1 so r t mark ings
2 f o r each m in mark ings
3 cu r = m. from
4 f o r each mj i n mark ings s t a r t i n g a f t e r m
5 i f mj . from > m. to
6 break
7 e l s e i f mj . from >= cur
8 draw from cur to mj . from
9 cu r = mj . to

10 draw from cur to m. to

4.2.3 The Marking Control Section

The user should have easy control over all set markings. It comes with the territory
that markings should be deletable one by one, as mentioned in Section 2.1. In order to
implement that, we introduce the Marking Control Section to the editor’s right. We
go without an extra heading. The section is a simple list of all current markings, each
with a red cross to delete it. This does not require explanations for the user, because
it is self-explanatory. If there are two or more markings, we append an additional cross
to delete all of them.

We also thought of more features here like changing the marking’s text, changing the
marking’s position or activate and deactivate markings. But since they can be created
and deleted so easily and the query can be changed inside the editor, this really does
not make sense.

The list of markings is not existent when the page is loaded, but completely appended
to the page accessing the DOM with JavaScript. We use D3 for this and join the
data from markings with new tr elements. Because the row should contain a cell
with the marking’s text which can be quite long, we cut it off at a configurable length.
We use the same CSS class as used in the editor to style the table cell. The red cross
image is equipped with an alternative text and a title that is shown as a tooltip, as
well as the most important thing: a function that deletes the marking, updates the

42 Binoculars for Habitat

view and optionally executes PGHabitat again.

A tiny animation increases the width of the table cells. The implementation caused
another of these typical, unexpected, little issues, that nonetheless needs to be solved:
The observation div also moved with the growing width. So, we set the CSS attributes
min-width and max-width of the marking div in order to fix this.

4.3 JT Processing

If we bring it down to its simplest level, the job of the frontend is to display the JT
that was produced by PGHabitat. Of course there are several things that need to be
done: We need to process the JT.

For development we also have a rendering function that omits these processing steps
and shows the raw results. The table from Figure 2.6 could look like the table in
Figure 4.4.

Figure 4.4: Rawly Rendered Table

As we have seen, JTANs eventually become column names when it comes to rendering,
even though textually adjusted and not every one of them. The prefixes of JTANs that
PGHabitat produces are listed in config.js , because we do not want to hard-
code them in our functions.

4 Implementing the Frontend 43

4.3.1 Existence of Scopes and Observations

In addition to every scope or observation, a JT carries a boolean attribute that tells us
if it exists (Figure 3.3). Its JTAN differs from the accompanying one only in the special
prefix "exists:". How non-existing values can occur was explained in Section 2.2.

If we just filled non-existent values with NULL values, like it was in former PGHabitat
versions, we could not tell whether there is no observed value or SQL NULL. Since this
can make an important difference (Figure 1.1), we use the additional attribute that is
set to false if and only if a scope or observation does not exist.
Of course, we will not render these additional attributes visible for the user. But
we can not delete them until we render the table, because they constitute important
information of our JT.

4.3.2 Arranging a State

The PGHabitat result is considered to be part of the state we mentioned before. We
save different things in global variables:

• habitatResult: This is the unmodified textual result we get from the
habitat.php script as a string. It also contains potential error messages.
executeHabitat is the function that writes it.

• habitatJT: This is the parsed result as a JavaScript object.
handleHabitatResult is the function that writes it.

• jtGlobal: This is a modified version of habitatJT. We perform some
processing on it to get the object that represents the observation data.
handleHabitatJT is the function that writes it first.

All of the JT processing can be divided in two parts: The processing that happens to
arrange a global representation of the observation data (jtGlobal) and the process-
ing that happens afterwards to render the table for the user. The rendering function
does consult the jtGlobal instance but does not modify it anymore.

44 Binoculars for Habitat

In case of an error, we present an appropriate message to the user in order to help
him to fix the problem. Errors can occur for various reasons: The query could be
syntactically wrong, PGHabitat could have difficulties with the database connection,
the query could be incompatible with the database state, et cetera. Also, parsing the
script’s result could fail.

In case of success, the next step is to make a deep copy of the habitatJT object for
jtGlobal. There is no built-in JavaScript function to do that. One of the easiest
implementations is the conversion to a string which is parsed afterwards. Amazingly,
this can be faster than the copying function from JQuery, for instance.1

4.3.3 General Modifying

A handful of modifications are made to jtGlobal, and to its copy for rendering,
respectively. Some of the functions return an object, some do not, but all work directly
on a JT.2 Since a JT can be nested arbitrarily (Section 2.3.2), these functions have
to be recursive. Most of them follow a common pattern: Inspect the current array
(table) or object (single row), do the work and recurse where necessary. Their usage
is independent from the JT it is used for as a general rule. This means, they can be
used for arbitrary JT instances in further development on demand.

The following JT processing functions are notable:

• jtDeleteAttr: It is useful to delete certain attributes. In most cases we
know the prefix of the key of an attribute we want to delete. This is why this
function takes a JT and a key prefix. For the prefix, the known prefixes from
config.js suggest theirselves.

• jtDistributeURIDs: This function adds some new attributes - called URIDs
- to a JT, that helps us to identify rows. More on that in Section 4.3.4.

• jtLiftRowValues: As we have seen in Figure 3.3, a row value is a single
1For details, see http://web.archive.org/web/20140328224025/http://jsperf.
com/cloning-an-object/2.

2This principle is known as programming “is situ”.

http://web.archive.org/web/20140328224025/http://jsperf.com/cloning-an-object/2
http://web.archive.org/web/20140328224025/http://jsperf.com/cloning-an-object/2

4 Implementing the Frontend 45

attribute that has an object as a value. This object again contains one attribute
per SQL column. If we rawly render a table, it appears as a nested subtable
with one row (Figure 4.4). Many of them may look confusing. This function
lifts every row value attribute into the parent row. The new JTAN is built as
a concatenation of the row value JTAN, a delimiter and a string to identify the
column. The key of the row value object would not be enough for this string,
since there easily could be another table with the same name: we would loose
one of them. In SQL-syntactic style we concatenate the table alias, a period and
the key.

• jtDeleteIgnoredRows: This function deletes some row objects from a JT.
It takes a list of URIDs to identify these rows.

• jtEditNonExisting: With this function we can edit the value fields of
observations or scopes that do not exist. They are replaced with a special string.

• jtDeleteSingleScopes: This function simplifies a JT by substituting it
with its own content under certain circumstances. More on that in Section 4.3.5.

4.3.4 URIDs and UCIDs

Unique Row Identifiers

It is always a good idea to have unique identifiers for objects. Therefore, we should
have the opportunity to identify rows. In SQL databases, row values can occur multiple
times, so it is no option to use them. Luckily, PGHabitat already delivers row
identifiers (the JTAN is “rid”) for every SQL data row. Also for groups, as they occur
when we use the GROUP BY clause or SQL aggregates, there are group identifier
(“gid”). The problem is: They are only unique within their innermost scope. What we
need are globally unique row identifiers. We will call them URIDs.

If we think about it, the concatenation of a RID and potentially nested pairs with the
JTAN and the next RID is unique. This is how we build URIDs. Let us quickly have a
closer look on how a URID is structured (Figure 4.5):

46 Binoculars for Habitat

Figure 4.5: URID Example

1 u r i d $ [2] $xScope . r i d . 2 . 2 $$ [3]

Figure 4.6: URID Regular Expression

1 〈prefix〉 (〈d〉 (〈rid〉〈d〉)?)∗ 〈d〉〈d〉〈rid〉

Every URID starts with a determined prefix (urid to keep it simple) and ends with
the RID of the last nested row ([3]). As we see, PGHabitat’s RIDs are arrays of
integers at the moment. Anyhow, we stringify3 it. Between these two parts, the list
of RIDs and JTANs we collect when we traverse the JT can be found. We separate
them with a special delimiter ($).
For prefix 〈prefix〉, delimiter 〈d〉, JTANs 〈jtan〉 and RIDs 〈rid〉, we can formulate
a regular expression for URIDs, shown in Figure 4.6.

The double delimiter right before the last RID is important. This way, we make sure
that all URIDs build a prefix-free code.4

The function jtDistributeURIDs that processes a JT and distributes URIDs
recursively is called in handleHabitatJT where we prepare jtGlobal. In its
implementation, we attach a URID to exactly those rows that already have a RID/GID.
The function just appends URIDs to a JT, which means after using it, the JT has
URIDs and RIDs/GIDs. We now can benefit from jtDeleteAttr and delete RIDs
and GIDs, because they are not needed anymore. URIDs, however, will not be deleted
until we render the JT.

Unique Column Identifiers

Just like rows, we want to identify columns. Therefore, we introduce globally unique
column identifiers (UCIDs). They look basically like URIDs, but do not include RIDs,

3This is the catchy term for converting a JavaScript value to a JSON string.
4No URID is prefix of another URID.

4 Implementing the Frontend 47

since rows do not influence the structure of columns (2.3.2). Instead of the last RID
after the double delimiter, we append the JTAN of the column. Also, naturally, the
prefix is ucid.

We define helpful functions that for instance can calculate the UCID from a given URID
and JTAN (calcUCID) or calculate if a URID matches a UCID (matchesUCID).

On this basis, we can prepare something that is of service for the row filter func-
tionality5: A global hashmap, called ucidValuemap, in which for every column the
existing values are stored. updateUCIDValuemap is the function that traverses
jtGlobal and fills the value map. We decide whether a column is filterable on the
run and draw up a few restrictions:

• The value should be atomic,

• it should be either a row value or an observation,

• the row should have a URID.

Before we store a value of an observation, we make sure that it exists. If not, we store
undefined to mark the absence of a value. We do not choose NULL, because that
would be a valid SQL entry (Recall Figure 1.1). This can be useful because it allows
us to filter rows with non-existing values, too, which might be the interesting ones of
all.
Naturally, a value should not occur in a list multiple times. We define a function that
removes duplicates from a list.6

4.3.5 Deleting Scopes

In a JT, every subtable occurs within a scope (2.3.2).

For the user, scopes are implicit apparent through nested subtables. Besides that, he
is not interested in their names that PGHabitat created artificially.

5We will come back on that in Section 4.4.3.
6...and call it nub as an homage to Haskell.

48 Binoculars for Habitat

One step of JT processing is to delete single scopes (jtDeleteSingleScopes):
If there is a JT with only one row object that only contains one single scope attribute
and nothing important besides (like other scopes or observations), we replace it with
the value of the attribute. For instance the object

1 [{"xScope.rid.0.0" : [{ "xScope.rid.1.1" : [< ob j e c t >] ,
2 "exists:xScope.rid.1.1" : true }] ,"exists:xScope.rid.0.0" : true }]

only becomes

1 [< ob j e c t >]

The deletion of single scopes only is performed if the scope is existent.

Note that the outer row object is the only element of the array. We could not have
done this if there were more, because that would result in nested arrays. Since the
elements of an array are considered as row objects, columns with integer JTANs would
occur.
In difference to that, the innermost array could contain multiple rows. It still would be
a valid JT.

In reality, these prerequisites are only fulfilled for the outer scopes of a PGHabitat
JT.

To call jtDeleteSingleScopes used to be the first thing to do when preparing
jtGlobal. The goal was to make the JT smaller, nested shallower and to make
URIDs shorter. It turned out to be a bad idea for the following reason: The URID of a
row may not be persistent anymore, if we consult PGHabitat again. It is possible that
a new scope or observation occurs and a scope is not thrown away that was thrown
away before. Rows marked as interesting would not be reliable (2.2, persistence of
interesting rows). Now this function call is part of the rendering function. That leads
us to the next section.

4 Implementing the Frontend 49

4.4 The Observation Table

The observation table is the central part of the debugger. Let us have a look on how
it is rendered and equipped with functionality.

4.4.1 Rendering the Table

The observation table is created completely via DOM manipulation. We use D3 to
simply append nodes. Our Debugger Page has a div container at its disposal called
OTA (“observation table anchor”) where we start from.

The function jtGlobalRender is responsible for starting the rendering with
jtGlobal and acts as a wrapper of the main rendering function jtRender. It
deletes child nodes from former tables or error messages. jtRender itself is capable
of creating observation tables at any given place in the document and could be used
to only render parts of a table again.

The part of JT processing that belongs to rendering is done now. Only the deletion of
single scopes is performed (4.3.5), while other steps are deprecated.

If row values should not be displayed (Figure 2.10), one possibility is to delete them
now via jtDeleteAttr. The more clever idea to translate this into practice will be
explained in the next section.

We also used to call jtDeleteIgnoredRows (4.3.3) here in order to delete rows
that do not pass the filter. But that led to errors when we wanted to render an empty
table. Expressed as a JT, an empty table has no schema. Instead, we dismiss this
function for this purpose and check if a row should be displayed just before appending
it to the document.
Similarly, we do not edit non-existing observations and scopes
(jtEditNonExisting) by processing the JT. Rather, we check whether we
need to display a special label directly before rendering it. This way, meta-information
is not merged with the SQL data as long as possible.

50 Binoculars for Habitat

Because table headers are lifted (2.3.1), the rendering of table head and table body can
be completely separated. Both jtRenderHead and jtRenderBody are recursive
and invoked from non-recursive jtRender, operating on the same joined table data.

Rendering the Table Head

The table head is rendered within a thead element as a child of the given table selection.

As we know, tables can be nested deeply. If there is a scope with a subtable, we
need to recurse and render its own header. But where to append it? We still want to
visualize the nesting and not render a single header row. The solution is the following:
There are two rows for every nesting level of JTs: a headrow and a subheadrow. In
the headrow the columns of a JT like row values and observations can be found. If
there is a scope with a nested subtable, we display a special string (the empty string)
in the header row. The subheadrow contains just as many th elements as the headrow
and - in case of a nested subtable - a new table element within as an anchor for the
recursion. Thus, we achieved that the table head has just as many rows as the depth of
the JT. The last subheadrow has no content and therefore is not visible automatically.

If we are about to render the table head for a subtable, we need to know its schema.
On recursive function call, the choice of the row is important, because there may be
rows for which this scope does not exist and these rows would not be able to offer the
schema of the subtable. A helper function jtArbitraryScopeContent returns
the subtable of a given scope name of a row, where this scopes exists. We can rely on
the fact that there is at least one row with this property, because otherwise the scope
would not make any sense.
Helpers for a function are a good idea in general to exhibit a clear structure. We define
some for calculating the attributes of table header rows and their cells like CSS classes,
colors and labels that are actually displayed. Having said this, it is more comprehensible
that we should distinguish between JTANs and column names.

Remember that we did not delete attributes, which should not be displayed, yet. This
affects the exists attribute and the URID, as well as row values. The clever thing
is: we do not need to. The rendering works with a helper function that distills all

4 Implementing the Frontend 51

column names from a JT that should be rendered and returns them as an array. For
every entry in this array, we look up the value in all row objects. Columns that should
not be displayed are simply deleted from this array. Because arrays do have positions -
unlike objects - we can also sort these column names - and therefore the display order
of the columns - ad lib. A sorting function compares two column names according to
the order defined in a variable in config.js , so that this can be changed easily.

In order to decide which column a th cell belongs to later on, we attach an attribute
to the node. The id attribute is not appropriate here since an id really should be
unique. In HTML5, any element can carry custom data with the data-* attributes
[W3C, 3.2.3.8]. We can make good use of that as we attach data-ucid.

Rendering the Table Body

The table body is rendered as a tbody element similarly to the table head. Instead of
the keys, now the values of row objects are made visible. We iterate over the array of
row objects and append a tr element to the body if

• it has no URID, because these kind of rows should be displayed all the time, or

• if its URID is marked as interesting or

• if its URID is not marked as ignored.

So, interesting rows are displayed even when they are ignored, which is a feature, not
a bug.

Every SQL row represented in a tr element gets an HTML id attribute with the URID.7

Just like in header cells, the data cells carry their UCIDs in data-ucid.

The content of a cell depends on the type of the JTAN: If we have an existing scope,
we need to append a new subtable and recurse. Otherwise, we just call a helper that
pretty-prints records, arrays, strings, numbers and booleans. We also use CSS to style
the background color of boolean or non-existing values.

7This time, they are unique.

52 Binoculars for Habitat

The function does not only append a tbody element to the given table. It also adds
a span element as a table replacement. This element is shown when the table is
collapsed. We make the label for this replacement dependent on the number of rows
we appended to the body and distinguish between no rows, one row or multiple rows.

The fact that we rendered head and body separately leads to an annoying bug. If
nothing else is specified, each table cell adopts the width it needs. In vanilla HTML
tables, the browser of course takes care of the widths in every row and renders a
perfectly aligned table. However, this is not done for us now because nested subtables
in the head do not have anything to do with the accompanying subtables in the body.
In case of varying lengths of their contents, header cells may not be above the right
column of the body.
Luckily, D3 offers the opportunity to get and set the width of DOM objects. Even if
the width is set in percentage, absolute values in pixels are returned. We work around
the problem by figuring out the maximum width of each column and adjusting every
relevant cell.

Now that we rendered the table, it is time to make it interactive.

4.4.2 Implementing Interesting Rows

Every row that has a URID is a SQL data row and should be markable as interesting.
Interesting rows differ from non-interesting rows in their background color and visibility
of subtables, as explained in Chapter 2.

The interestingness of rows should be persistent when PGHabitat is consulted again
(2.2). This is why we store URIDs of interesting rows in a global array that is encap-
sulated from the view.

But how do we identify a row when the user clicks on it in the browser to toggle its
interestingness? Now we profit from the id attribute of the row, because D3 can fetch
it. So, we can extrapolate the URID and make state changes that do not only affect
the view.

4 Implementing the Frontend 53

When a row is marked as interesting or uninteresting, firstly, this state is saved. Sec-
ondly, the view is updated: We change the CSS class to manipulate the background
color of the row. Also, we show subtables of an interesting row and hide subtables of
an uninteresting row, respectively. What sounds easy caused some problems: We only
want to select every direct subtable. A simple D3 subselection of a given row selection
also selects subtables of subtables and their descenders.
A possible solution is to use a global selector, which allows us to subselect direct child
nodes. It contains the unique URID of the row. Furthermore, the URID can not be
used unmodified, since D3 interprets some of its special characters as enumerations
(,) and classes (.), et cetera. To fix this, we need to escape these characters.

The effects on mouseover, mouseout and click are hit by event handlers. But it
should be possible to turn the whole feature of interesting rows off. For this reason,
we do not incorporate it into the rendering function, but instead define a function
enableInterestingRowFunctionality.

With D3, we select every tr element within the table and filter just the ones that
should have this functionality - the ones with valid URIDs. Then we register the event
handlers.
As a result, another problem occurred. Consider an interesting row router with a visible
subtable. Say, the user wants to mark a row rinner within the subtable as interesting
with a click. Now two rows are toggled: rinner and the router, because both event
handlers do their job. The user does not see the subtable anymore, because it was
collapsed.
Once found, the solution is easy: we need to stop the propagation of the event in the
D3 event global [Bos, d3.event].

Additionally, to the interactivity of rows, we do register event handlers for the header
cells of scopes if they are in CSS class invertableColumn.8 On mouse click, the
interestingness of every accompanying row is toggled. In the implementation it pays
off that we can easily check via matchesUCID if the URID of a row matches the
UCID of the cell the user clicked on.

8The rendering function took care of that.

54 Binoculars for Habitat

The functions to show or hide a table basically swap the display attribute of a table
body and a table replacement.

As a third step after defining all these events, subtables of non-interesting rows are
collapsed by default, except they only contain one row, as we explained in Section
2.3.1.

4.4.3 Implementing Row Filter

A row is said to be ignored if it should not be part of the observation table. This
is currently the case if it is filtered out via rowFilterWith, but could have other
causes in the future. As already mentioned, the interestingness of rows has a higher
importance. While subtables of uninteresting rows are not displayed but still available
as a DOM node, for ignored rows we follow a different approach: They will not be
rendered at all. In many cases, this makes the table significantly smaller.

rowFilterWith is a function that accepts a UCID and a value. It traverses
jtGlobal and checks if a row has a URID that matches the given UCID. If so,
the row is marked as ignored in case the specified column has another value than the
given one. If the given value is undefined, we interpret it as a special case: Then only
rows with non-existing values are kept.
Just as for interesting rows, we maintain a global array with URIDs of ignored rows
and do not actually throw data away.

In order to implement the interface for the row filter functionality
(enableRowFilterFunctionality), we append an HTML select ele-
ment to the table head cells that will be displayed on mouse click. The individual
options are created with the help of ucidValuemap.
We assume two things: Firstly, jtRenderHead should have made the th elements
member of the filterableColumn CSS class. Secondly, ucidValuemap should
have been initialized and filled at this time, which is a step of JT processing (4.3.4)).

The HTML option element can be provided with an onclick attribute. Its value should
be JavaScript code. We fill it with a function call of rowFilterWith to compute

4 Implementing the Frontend 55

the filtering and jtGlobalRender to render the new table.

The fact that we append textual code to the document should make us ask ourselves
a few questions: What will happen to values of different types? What if a value
contains special characters?
Actually, rowFilterWith does string based comparisons for this reason. We define
helper functions that convert values to strings9 and compare two values in their string
representation. This approach should not cause complications because one SQL
column can not contain values of multiple types.
All UCIDs and values within the appended code are encoded via
encodeURIComponent because they should not be interpreted as JavaScript
under any circumstances. The decoding is part of the code, immediately.

4.5 Additional Pages

4.5.1 Implementing the Query Management Page

The fact that query management is done on another page (2.6) is already reason
enough to save queries on the server side in $_SESSION.

The Query Management Page consists of several CodeMirror instances, containing

• the current query,

• pinned queries,

• recently used queries from the history.

The query history is shown without the recent query, which would not be of any use.

Because this is not the place where queries should be edited, we modify the CodeMir-
ror configuration object by setting readOnly [CMA] to true, so that the content
can not be changed.

9This also includes undefined and null. Both result in a type error if toString is called on
them.

56 Binoculars for Habitat

To pin and and unpin queries or to use a query as the current one, there are buttons
below each editor instance. We summarize them in an HTML form for a good reason:
On click, a JavaScript function is called. It needs to know which query we are talking
about. All of these JavaScript functions request a PHP script on the server in order
to update the $_SESSION variable. The query is taken from the form and submitted
via HTTP POST.

The PHP scripts are all similar and plain. They do not only update the state on the
server, but also deliver the latest version of the Query Management Page. Because
the exception proves the rule, the script to set the current query delivers the Debugger
Page. Why should a user click this if he does not want to get started?

4.5.2 Implementing the Setup Page

The Setup Page is designed to configure the PGHabitat frontend.

It basically contains one HTML form that links to itself via action="#". When we
request it, the $_SESSION variable is updated from $_POST.10 The script is divided
into two sections: updating variables and creating a document.

Our state in $_SESSION is only updated when $_POST is set. Otherwise we would
possibly delete settings every time the user wants to have a look at his setup.

To set boolean values like usePATHBinary we compare the value with constant
"true" via == instead of fetching the value directly. This is nice because it will
always return a boolean value, no matter if we use another type to set it. Just like
JavaScript, PHP comes with the non-strict comparison operator == that considers
true (type boolean) and "true" (type string) as equal [PHP, Operators - Compar-
ison Operators]. For type-strict comparisons there is the === operator.

Furthermore, we set default values if we do not have any yet, which should be the case
on the first request of the page.

Last but not least, we want to note a web development trick that is old but gold
10Just like we did in the habitat.php script. No surprise here.

4 Implementing the Frontend 57

Figure 4.7: Alignment of Forms

(a) Crude (b) Aligned

and deserves mentioning: To get a nice uniform layout, the input fields are put inside
an invisible HTML table. This way, we do not need explicit spaces or CSS rules and
everything is perfectly aligned (Figure 4.7). Although the usage of HTML tables for
layouting is notorious these days, it suits this situation fine.

5 Conclusion 59

5 Conclusion

PGHabitat can be a helpful tool, whether it is for debugging or for the illustration
of SQL behavior. Unfortunately, the work could not be appreciated adequately so far.
The interface simply was too ponderous.

The frontend finally makes PGHabitat usable. Now the software can take full effect.

A good field of application may be university education. Students will have an easier
time following the lecture if learning content is visualized. Especially the meaning of
abstract, textual SQL queries can be much more comprehensible when they are related
to concrete values from a database state.

However, PGHabitat as well as its frontend are not ready to be released. Both can
and should be developed further.

Future work can concern the following aspects:

• The observation table could be adjusted for special cases. For instance, the
“show row values” feature might not be sufficient for tables with many columns.
Giving the user the opportunity to select particular columns could be helpful.

• Until now, every selected substring of a query can become a marking (4.2.1). Us-
ing the mouse imprecisely results in invalid marking positions easily. It would be
a great feature if selections that are slightly off would be corrected automatically.

Still, the project shows that it is possible to observe intermediate step results in declar-
ative languages just as good as in imperative ones, or maybe even better.

List of Abbreviations 61

List of Abbreviations

AJAJ Asynchronous JavaScript and JSON
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CMS Content Management System
DBMS Database Management System
DDL Data Definition Language
DML Data Manipulation Language
DOM Document Object Model
GID Group Identifier
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocoll
JSON JavaScript Object Notation
JT JSON Table
JTAN JSON Table Attribute Name
OTA Observation Table Anchor
PHP PHP Hypertext Preprocessor
RDBMS Relational Database Management System
RID Row Identifier
UCID Unique Column Identifier
URI Uniform Resource Identifier
URID Unique Row Identifier
XML Extensible Markup Language

62 Binoculars for Habitat

List of Figures

1.1 Comparison with NULL . 2

2.1 Tables: Happy Kids . 5
2.2 Query: Happy Kids . 6
2.3 Result Table: Happy Kids . 6
2.4 Observing Happy Kids, Step 1 . 8
2.5 Observing Happy Kids, Step 2 . 9
2.6 Observing Happy Kids, Step 3 . 10
2.7 Tables: Remaining Toys . 13
2.8 Query: Remaining Toys . 13
2.9 Result Table: Remaining Toys . 14
2.10 Showing Row Values . 15
2.11 Unnested Query for Remaining Toys 16
2.12 Incorrect Result Table: Remaining Toys 16
2.14 Query: Flights . 16
2.13 Table: Flights . 17
2.15 Observing Many Flights . 18

3.1 Habitat Usage . 26
3.2 Table represented in JSON . 29
3.3 Output of Habitat . 30

4.1 Call Graph . 35
4.2 Overlaid Markings . 39
4.3 The Redraw-Markings Algorithm . 41
4.4 Rawly Rendered Table . 42

List of Figures 63

4.5 URID Example . 46
4.6 URID Regular Expression . 46
4.7 Alignment of Forms . 57

64 Binoculars for Habitat

Bibliography

[APA] Apache HTTP Server Version 2.2 Documentation. http://httpd.

apache.org/docs/2.2/en/. [Online; accessed 21-September-2014].

[Bos] Bostock, Mike. D3.js API Reference. https://github.com/

mbostock/d3/wiki/API-Reference. [Online; accessed 21-
September-2014].

[CMA] CodeMirror API Reference. http://codemirror.net/doc/

manual.html#api. [Online; accessed 21-September-2014].

[Die14] Dietrich, Benjamin. Rebooting Habitat on PostgreSQL - A Declarative
Observational Query Debugger, January 2014.

[ECM] ECMAScript Language Specification - ECMA-262 Edition 5.1. http://
www.ecma-international.org/ecma-262/5.1/. [Online; ac-
cessed 21-September-2014].

[GKRS11] Torsten Grust, Fabian Kliebhan, Jan Rittinger, and Tom Schreiber. True
Language-level SQL Debugging. In Proceedings of the 14th International
Conference on Extending Database Technology, EDBT/ICDT ’11, pages
562–565, New York, NY, USA, 2011. ACM.

[GR13] Torsten Grust and Jan Rittinger. Observing SQL Queries in their Natural
Habitat. ACM, 2013.

[GW87] Richard A. Ganski and Harry K. T. Wong. Optimization of Nested SQL
Queries Revisited. In Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’87, pages 23–33, New York,

http://httpd.apache.org/docs/2.2/en/
http://httpd.apache.org/docs/2.2/en/
https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference
http://codemirror.net/doc/manual.html#api
http://codemirror.net/doc/manual.html#api
http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/

Bibliography 65

NY, USA, 1987. ACM.

[Kim82] Won Kim. On optimizing an sql-like nested query. ACM Trans. Database
Syst., 7(3):443–469, September 1982.

[Kor86] Korth, Henry F. and Silberschatz, Abraham. Database System Concepts.
McGraw-Hill Book Company, 1986.

[PHP] PHP Documentation. https://php.net/manual/en/. [Online; ac-
cessed 21-September-2014].

[Pog53] Poggendorff, J. C. Zur Theorie der Farbenmischung - Poggendorff’s An-
nalen de Physik und Chemie, Bd. 89. 1853.

[POS] PostgreSQL Documentation 9.3. http://www.postgresql.org/

docs/9.3/static/. [Online; accessed 21-September-2014].

[RFCa] RFC 2183 - Communicating Presentation Information in Internet Messages:
The Content-Disposition Header Field. http://www.ietf.org/rfc/
rfc2183.txt. [Online; accessed 21-September-2014].

[RFCb] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. https://www.
ietf.org/rfc/rfc2616.txt. [Online; accessed 21-September-
2014].

[SG] T. Smith and J Guild. The C.I.E. Colorimetric Standards and their Use.
http://iopscience.iop.org/1475-4878/33/3/301/. [On-
line; accessed 21-September-2014].

[W3C] HTML5 - A vocabulary and associated APIs for HTML and XHTML.
http://www.w3.org/TR/2011/WD-html5-20110525/spec.

html#contents. [Online; accessed 21-September-2014].

https://php.net/manual/en/
http://www.postgresql.org/docs/9.3/static/
http://www.postgresql.org/docs/9.3/static/
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2183.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
http://iopscience.iop.org/1475-4878/33/3/301/
http://www.w3.org/TR/2011/WD-html5-20110525/spec.html#contents
http://www.w3.org/TR/2011/WD-html5-20110525/spec.html#contents

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und nur mit
den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut
oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen
als Entlehnung kenntlich gemacht worden sind.
Diese Bachelorarbeit wurde in gleicher oder ähnlicher Form in keinem anderen Studi-
engang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

	Introduction
	Using the Frontend
	Basic Features
	Interesting Rows
	Nested Tables
	Depiction of Nested Tables
	Theory on Nested Tables

	Aggregates
	Row Filter
	Query Management
	A Tidy Table

	Designing the Frontend
	Technologies
	Stateful Web Pages
	PHP Superglobals
	Asynchronous JavaScript and XML

	Execution of Habitat
	Usage of Habitat
	The Habitat Script

	JSON Tables
	Project Structure

	Implementing the Frontend
	Markings
	Saving Markings
	Colors

	The Editor
	Creating Markings
	The Redraw-Markings Bug
	The Marking Control Section

	JT Processing
	Existence of Scopes and Observations
	Arranging a State
	General Modifying
	URIDs and UCIDs
	Deleting Scopes

	The Observation Table
	Rendering the Table
	Implementing Interesting Rows
	Implementing Row Filter

	Additional Pages
	Implementing the Query Management Page
	Implementing the Setup Page

	Conclusion
	List of Abbreviations
	List of Figures
	Bibliography

